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Structural properties of self-localized steady-state modes in damped parametrically driven lattices
have been numerically observed. The states are kinks, which are localized regions between two standing
wave domains of the same wave number with an offset in spatial phase; and domain walls, which are lo-
calized regions between two standing wave domains of different wave numbers. The properties include
preferred definite symmetry, a wide variety of distinct states, and hysteretic transitions that occur along
boundaries in the plane of the drive parameters (amplitude and frequency). The transitions of the local-
ized states exhibit the spontaneous processes of symmetry reversal and “complexification,” as well as the
onset of quasiperiodicity and chaos. Simple plausible models based upon few degrees of freedom fail to
correctly describe the instabilities, which indicates that the behavior is a collective phenomenon.

PACS number(s): 46.10.+z, 63.20.Pw, 63.20.Ry

I. INTRODUCTION

Nonlinearity can give rise to self-localized waves that
have been observed in various systems. The classic exam-
ple is the Korteweg—de Vries soliton, which was first ob-
served in the nineteenth century [1]. The requirement
that self-localized waves occur for free motion drastically
restricts their existence. In particular, the inclusion of
dissipation and parametric drive leads to a wealth of
steady localized states in one-dimensional oscillatory lat-
tices. In this article, we report numerical investigations
of three such types of nonpropagating self-localized
structures: cutoff kinks, noncutoff kinks, and domain
walls. The kinks are localized regions between two stand-
ing wave domains of the same wave number with a
mismatch in spatial phase, whereas the domain walls are
localized regions between two standing wave domains of
different wave number. In a previous article [2], we and
our collaborators established the existence of these states
in an actual pendulum lattice and a simple numerical
model. In the present article, we numerically examine
some of the structural properties of the localized states.
These include states with preferred definite symmetry, a
wide variety of states corresponding to different initial
conditions and different spatial mismatches, and instabili-
ties and resultant transitions that occur along boundaries
in the plane of the drive parameters as these are slowly
varied.

Steady-state kinks and breathers have been previously
observed in cutoff standing wave modes which are at the
extremes of the oscillation band, where the group velocity
vanishes. These observations include lower cutoff surface
wave kinks [3] and breathers [4], lower cutoff pendulum
lattice breathers [5], upper cutoff pendulum lattice kinks
[2], and upper cutoff magnetic lattice breathers [6]. Vari-
ous approximate analytical treatments [2,3,5-10] of these
states can be summarized and unified [5] by the fact that
weakly-nonlinear slowly-varying amplitude modulations
of cutoff modes yield a nonlinear Schrodinger equation
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that possesses kink (hyperbolic tangent) or breather (hy-
perbolic secant) solutions, depending upon whether the
mode is lower or upper cutoff (sign of the dispersion) and
whether the mode softens or hardens (sign of the non-
linear coefficient). In the case of no drive and dissipation,
propagating solutions exist and are known to be solitons
[11]. An important observation in our previous article
[2] is that lattice kinks are not restricted to cutoff modes,
but can occur in modes inside the oscillation band (non-
cutoff kinks). Furthermore, the wave number need not be
the same on either side of a localized structure (domain
walls). The straightforward amplitude modulation
analysis which describes the cutoff solitons fails for non-
cutoff kinks and domain walls, and has prompted several
theories [12—14]. As explained in Sec. V, our observa-
tions of domain walls conflicts with the continuum theory
[13,14] of these states. The stability of noncutoff kinks
and domain walls in undriven undamped (Hamiltonian)
media is an open question.

The observations of upper cutoff kinks, noncutoff
kinks, and domain walls are not restricted to our model
equation (Sec. II) with a softening nonlinearity. We have
also observed these structures in the hardening version of
the equation, and with a quadratic rather than cubic non-
linearity, as well as in damped parametrically driven
sine-Gordon and sinh-Gordon lattices. The robustness of
these states suggests that they should be observable in
many other systems, e.g., in (a) a damped parametrically
driven ¢* lattice, (b) lattices where the parametric drive
operates through the coupling, and where there are no
external potential wells, (c) higher-dimensional lattices,
(d) continua, and (e) certain bimodal lattices. In (a), the
localized states should exist in modes where all of the os-
cillators are on a common side of the double potential
well. Various effects of damping and parametric drive on
topological kinks in ¢* and sine-Gordon lattices, which
model many condensed matter systems, have recently
been investigated [15,16]. A possibility in (b) is a damped
parametrically driven Toda lattice, which should possess
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nonpropagating breathers in the upper cutoff mode (as a
result of the hardening), and may possess kinks in
noncutoff modes and domain walls between different
modes. This is interesting because the Toda lattice is in-
tegrable in the limit of no drive and dissipation, and the
resultant solitons have no obvious connection with the
driven damped breathers, noncutoff kinks, and domain
walls. Regarding (e), for a localized state to be parame-
trically driven, it should be noted that the drive need not
be external. In a system that supports several different
types of waves (i.e., where the dispersion law is mul-
tivalued), one long-wavelength wave can act through
nonlinearities as an effective global parametric drive on a
short-wavelength wave of a different type. The localized
waves reported here may thus have application to biolog-
ical molecular chains, which typically have modes of
various types (e.g., transverse and longitudinal modes, as
in models of DNA [17]).

An interesting and potentially profound aspect of our
observations pertains to mesoscopic phenomena, by which
we mean the physics of systems whose number of active
degrees of freedom are between a few and very many.
For example, we find that the number of physically dis-
tinct modes of a lattice can easily exceed the number of
degrees of freedom of the system. As other examples, we
observe the phenomena of spontaneous symmetry rever-
sal and ““‘complexification,” in which a localized structure
spontaneously spawns a second localized structure that is
bound to it. Furthermore, we show that the instabilities
that occur in the localized structures cannot be success-
fully modeled by few-degree-of-freedom systems, even
though these models are very plausible.

The model equation and our various numerical tech-
niques are discussed in Sec. II. The basic features of
cutoff kinks, noncutoff kinks, and domain walls are exam-
ined in Secs. III, IV, and V, respectively. Symmetry re-
versals, quasiperiodicity, and chaos are then examined in
more detail in Sec. VI. Finally, in Sec. VII, several few-
degree-of-freedom models of the instabilities are con-
sidered and compared to observations.

II. MODEL SYSTEM

Our system is a one-dimensional lattice of identical
nonlinear oscillators that are linearly coupled. The non-
linearity is a simple cubic in the displacement, and the
dissipation is linear. The linear part of the oscillator re-
storing force is modulated uniformly in space, which sub-
jects the lattice to a global parametric drive. The equa-
tion of motion of the lattice is
d’, 5 do,

o —c“6,,,—20,+6,_,)+B ar

+[wi+ncos(2wt)]0,=abd , (1)

where 6, is the displacement of the nth oscillator, w, is
the linear frequency of an uncoupled oscillator, 7 is the
drive amplitude, 2w is the drive frequency, B is the
damping parameter, c¢? is a measure of the coupling
strength, and «a is the nonlinear coefficient. An actual
system approximated by (1) is a vertically oscillated lat-
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tice of coupled pendulums whose amplitudes are not
large [2], in which case a=w3/6. We choose a cubic
nonlinearity because it is the simplest, and because we
wish to show that the sin(8), which occurs in the equa-
tion of motion of the actual lattice and other systems,
plays no essential role in the existence of the localized
states. This nonlinearity is also advantageous because we
can generalize the model by allowing a to be positive
(softening system), zero (linear system), or negative (har-
dening system). By “softening” or “hardening” is meant
that the frequency of a free standing wave decreases or
increases, respectively, at greater amplitudes.

By scaling time and displacement, we can normalize o,
and the magnitude of a in the equation of motion (1).
Without loss of generality, then, we choose wy=1 and «a
=+41, 0, or —1. Unless otherwise specified, the results
presented here are for a softening system (a=-+1) with
¢?=0.1 and 8=0.03. The stability of all steady states
was checked by perturbing the displacements near a turn-
ing point of the motion. Each oscillator was given a ran-
dom perturbation between +5% of the maximum ampli-
tude in the lattice. Periodic boundary conditions yielded
essentially the same results as “reflecting” boundary con-
ditions, in which virtual oscillators next to the ends of the
lattice are specified to have the same instantaneous dis-
placements as the oscillators one wavelength minus one
lattice spacing from the end. Our domain wall investiga-
tions were performed with reflecting boundary condi-
tions, because in this case a single domain wall can occur
in the lattice. Our kink investigations were performed
with periodic boundary conditions.

If the number of oscillators does not exceed several
hundred, the numerical solution of (1) can be handled on
a fast personal computer with a simple finite-difference
method. The fourth-order Runge-Kutta method is em-
ployed here. We developed the software to be highly in-
teractive and visual, with the instantaneous displace-
ments displayed graphically on a monitor, so the user
could observe the evolution as a result of either the initial
conditions or changes in the values of the drive parame-
ters. These capabilities are very advantageous in the ob-
servation and investigation of the localized states. Many
analysis features were implemented in order to con-
veniently probe the system during the motion. These
consisted of menu-driven “windows” that would display
various quantities, including the amplitude and phase of
an oscillator selected by the user, as well as a Poincaré
map and fast-Fourier spectrum. Any display, particular-
ly the instantaneous displacements of the oscillators,
could be temporarily turned off in order to increase the
speed of the simulations.

III. UPPER CUTOFF KINKS

The simplest kinks reported here are those that occur
in a standing cutoff mode of a lattice, provided that the
mode is stable at finite amplitudes. For a softening lat-
tice, the upper cutoff mode is stable and can possess
kinks. The lower cutoff mode is subject to the Benjamin-
Feir instability [5,18], and the motion evolves into
breather solitons. For a hardening lattice, the behavior



1096

of the upper and lower cutoff modes is reversed. Numeri-
cal simulations of (1) show that stable steady-state kinks
can indeed exist in the upper cutoff mode of a softening
(a>0) lattice and in the lower cutoff mode of a harden-
ing (a <0) lattice. In this article, we focus on the upper
cutoff kinks. For most of the region in the drive parame-
ter space in which these kinks exist (see below), only
states with definite symmetry are stable. Figure 1 shows
the oscillators’ displacements at turning points of the
motion, for the cases of small and large amplitude kinks
in the upper cutoff mode. In Fig. 2, the kink structures
are more clearly and compactly displayed by the di-
agrammatic representations of the highly localized
(large-amplitude) states.

Analytically, by considering the standing upper cutoff
mode to have an amplitude that is weakly nonlinear and
slowly varying in space and time (neglecting higher har-
monics), it is readily shown that the amplitude obeys a
damped parametrically driven nonlinear Schrodinger
equation [2], which has the stable single-kink solution
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FIG. 1. (a) Antisymmetric and (b) symmetric kinks in the
upper cutoff mode at turning points of the motion. The points,
which correspond to the lattice sites, are numerical; the curves
are analytical (NLS theory). The lattice contains 49 sites (not
all are shown). The drive parameters are »=1.1832 and
71=0.074 in the smaller-amplitude cases and 0.9875 and 0.200,
respectively, in the larger-amplitude cases.
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FIG. 2. Diagrammatic representations of highly localized
upper cutoff kinks: (a) antisymmetric state, and (b) symmetric
state.

tan(28)=wp/v. The lattice spacing is assumed to be uni-
ty, x is the location of the node, and the linear frequency
of the upper cutoff mode is @, =(w3+4c?)!”2. Curves of
(2), in which the lattice site n is replaced by a continuous
variable, are shown with the numerical data in Fig. 1.
The theory agrees extremely well with the small-
amplitude data. This agreement persists with the an-
tisymmetric kink data [Fig. 1(a)] even when the ampli-
tude is neither weakly nonlinear nor slowly varying. This
appears to be coincidental because the theory for these
parameters disagrees substantially (roughly 20%) with
the symmetric data [Fig. 1(b)] in the kink region. Also in
contrast to the theory is that the phases of the oscillators
(to a 180° difference) in each steady state are not all exact-
ly the same, although the variation is slight (roughly a
0.05° lag in the kink region). The phase in the uniform
regions agrees well the theoretical value § in (2), which
predicts a value of 36.80° in the low-amplitude case and
8.62° in the high-amplitude case. The error is 0.70° in the
latter case, and half this in the former.

Figure 3 shows the regions in the drive parameter
plane in which the upper cutoff mode and antisymmetric
kink exist and are stable. There are 50 sites in the lattice
with the pure mode, and 49 sites in the lattice with the
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FIG. 3. Drive parameter plane boundaries of the upper
cutoff mode (open circles) and antisymmetric kink (closed cir-
cles). The linear frequency of the mode is w,;=1.1832. The
dashed curve is explained in Sec. VI.
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kink. The stability was tested by random perturbations,
as stated in Sec. II. The boundaries of the regions were
determined by a painstaking process of finely increment-
ing a drive parameter, waiting for a steady state to be at-
tained, and then checking the stability. As the drive am-
plitude or frequency is slowly increased, a remarkable
transformation occurs along boundary I. The kink un-
dergoes a structural change from the antisymmetric to
the symmetric state. This involves a spontaneously bro-
ken symmetry; the kink translates one-half of a lattice
spacing to either the right or left. The instability along
boundary II corresponds to the onset of quasiperiodic
motion in the kink region. The additional frequency in
the motion corresponds to a relatively slow decrease in
phase and increase in amplitude in one-half of the kink
region, while the opposite occurs in the other half. The
process reverses, and then repeats indefinitely. The sym-
metry reversals and quasiperiodicity are examined in
more detail in Sec. VI, along with the influence of the
effective Peierls-Nabarro potential which arises due to
the energy difference between kink states of definite sym-
metry.

Along boundaries IIT and IV in Fig. 3, both the kink
and pure mode decay to rest. The decay initiates from a
nonzero response amplitude along III, and from an essen-
tially zero response amplitude along IV. This is precisely
what the theory predicts for a single oscillator whose nat-
ural frequency is @;. Boundary III corresponds to the re-
lationship 7=2wp, for which the radicand v in y in (2)
vanishes. Here the system is “falling off the end” of the
frequency response curve [19], which is inherently bent to
smaller frequencies in the case of parametric excitation of
a softening system. Boundary IV corresponds to the
Mathieu parametric excitation threshold curve for fre-
quencies greater than the linear frequency of the mode.
For weak drive and dissipation, and for drive frequencies
that do not substantially depart from the linear modal
frequency w,, the Mathieu curve is given by

T=4w?—w?)+40B? . (3)

(This expression is slightly more accurate than the stan-
dard one [19] which is a hyperbola in 1 and w, because
we have not made the final explicit approximation that
the values of w and w; are close to each other.) Near
boundary IV the kink occupies the entire lattice, and be-
comes a linear mode which has a sinusoidal spatial varia-
tion. Boundary V corresponds to the uninteresting insta-
bility in which the oscillators are displaced ‘“‘over the
top” of the external potential wells [|6] > wy/a!/? in (1)],
resulting in divergent motion. In the region above
boundary IV, kinks exist but their symmetry is indefinite.
For example, if an antisymmetric kink in this region is
perturbed, the final location of the node is in general nei-
ther a lattice site nor halfway between lattice sites. If the
kink state is again perturbed, the node will in general
change its location. This behavior is not unexpected as
the linear response region is approached, because there is
no preference for the location of the node in the linear
limit. It is interesting that this lack of symmetry occurs
even though the kinks are still localized; the lack of sym-
metry appears to be the first indication of the approach
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to the linear response region in the parameter plane.

This continuous connection between a kink state and a
linear mode is the key to our physical understanding of
these localized states. It is simpler to first examine the
case of a lower cutoff hardening kink. We consider an
undamped undriven lattice that possesses a hardening
lower cutoff mode, e.g., a lattice described by (1) where
B=0, =0, and a <0. For simplicity, free boundary con-
ditions are assumed. The fundamental (lower cutoff)
mode has uniform amplitude. We begin with the next
small-amplitude (linear) mode, which has a node at the
center of the lattice and antinodes at the ends, and a
sinusoidal profile. We now imagine increasing the ampli-
tude and ask how the profile changes such that every os-
cillator has the same frequency and is either in phase or
180° out of phase; i.e., such that the response is a mode of
the system. Simply scaling the sinusoid violates this, be-
cause the nonlinearity causes the frequency in the regions
of the antinodes to increase but does not alter the fre-
quency in the region of the node. Furthermore, if the
profile remains sinusoidal the coupling does not alter the
frequency anywhere in the lattice. To achieve a modal
response, we must modify the sinusoid profile such that
there is a local balance of the effects of nonlinearity and
coupling (or curvature of the profile) upon the frequency.
This is accomplished in two ways: by flattening the
profile in the antinodal region, thus reducing the frequen-
cy there because the contribution due to coupling is re-
duced, and by increasing the curvature of the profile in
the nodal region, thus increasing the frequency there be-
cause the contribution due to coupling is increased. With
these deformations, it is possible to imagine that all of the
oscillators will have a common frequency and phase. The
critical fact that we learn from observations is that the
profile can readily become practically uniform in the an-
tinodal region, so that the nodal region is no longer
influenced by boundary conditions. When this happens,
it is no longer appropriate to consider the state as the first
mode above the lower cutoff mode, but as a localized
kink in the lower cutoff mode. The kink is free to move
as a result of external perturbations or nonuniformity,
and thus acts as a particle.

The argument for upper cutoff softening kinks, which
are those that are investigated in this article, is similar to
the argument above. The difference is that, whereas in-
creasing the curvature of a lower cutoff mode causes an
increase in frequency, increasing the curvature of an
upper cutoff mode causes a decrease in the frequency.
This evidently must be the case because the linear mode
just below the upper cutoff mode has a frequency less
than the upper cutoff frequency. Alternatively, a qualita-
tive examination of the actual coupling force leads to the
same conclusion [5].

Analytically, the approximate description of the transi-
tion from a sinusoidal envelope to a localized hyperbolic
tangent envelope is the elliptic sn function [3,5]. In the
limit of the hyperbolic state the kinks are solitons [11].

IV. NONCUTOFF KINKS

Kinks are not restricted to cutoff modes, but can also
occur in noncutoff modes. We have observed these in
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many modes whose wavelengths are either an even or odd
number of lattice spacings. Figure 4 shows an example of
a symmetric kink in the wavelength-four mode in which
every other site is a node. This kink corresponds to a 90°
spatial phase mismatch between the pure-mode domains
on either side of it. As shown in Fig. 4(b), the temporal
phases of the antinodes reveal a small deviation in the
kink region. The phases of the quasinodes approach a
constant value for oscillators sufficiently far from the lo-
calized structure. By performing simulations with a
larger number of lattice sites and with kinks of greater lo-
calization, we have established that this leveling off of the
phases is not a boundary effect [although it appears to be
in Fig. 4(b)]. It is interesting that the phases of the quasi-
nodes are substantially less localized than the amplitudes.

Whereas cutoff kinks correspond to only one possible
mismatch in spatial phase between the two extended
domains, many mismatches are possible in the case of
noncutoff modes. The structures of noncutoff kinks are
therefore much more varied than those of cutoff kinks.
Examples are shown in Figs. S5(b)-5(e), which display
some of the simpler kinks that can occur in the
wavelength-four mode in which every other lattice site is
a node [Fig. 5(a)]. As in the cutoff case, only kinks with
definite symmetry are observed to be stable, unless their
amplitude is small (see below). Symmetric and antisym-
metric kinks corresponding to the same spatial phase
mismatch are paired in Fig. 5. The kinks in Figs.
5(b)-5(d) are “elementary” in the sense that they are the
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FIG. 4. A symmetric kink in the wavelength-four mode: (a)
signed amplitudes of the oscillators, and (b) phases. The closed
and open circles in (b) represent a phase difference of 180°. The
drive parameters are ©=1.07 and =0.09.

BRUCE DENARDO AND WILLIAM B. WRIGHT 52

simplest structures that exist for a particular mismatch.
More complicated kinks can exist for the same mismatch
and drive parameters. For example, some initial condi-
tions lead to a steady-state juxtaposition of the two kinks
in Fig. 5(b) such that the mismatch is that in Fig. 5(c).
As another example, the kinks in Fig. 5(e) correspond to
no mismatch between the two domains, and so the most
elementary state in this case is no kink (i.e., the pure
mode). Note that these kinks can be obtained by a local
perturbation of the pure mode, in contrast to the elemen-
tary kinks. The antisymmetric kink in Fig. 5(e) can clear-
ly be considered as a juxtaposition of two out-of-phase
symmetric kinks in Fig. 4(c). The symmetric kink in Fig.
5(e) appears to be most simply considered as two elemen-
tary domain walls (Sec. V) bounding an upper cutoff
domain.

Another indication of the greater complexity of
noncutoff kinks compared to the cutoff case is that the
kink energy (Sec. VI) does not have the same sign for all
kinks. The energy of the cutoff kinks is always negative.
The noncutoff kinks in Fig. 5(b) have negative energy,
whereas those in Fig. 5(d) have positive energy. The en-
ergy of the symmetric kink in Fig. 5(c) is positive, while
the energy of its antisymmetric partner is negative.

Figure 6 shows the drive parameter plane regions in
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FIG. 5. (a) Pure wavelength-four mode, and (b)—(e) various
kinks in this mode. Each pair corresponds to the same spatial
phase mismatch between the two uniform domains, but to oppo-
site symmetry. The kinks in (b) and (d) correspond to +90°
mismatches, the kinks in (c) to a 180° mismatch, and the kinks
in (e) to no (or a 360°) mismatch.
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FIG. 6. Drive parameter plane boundaries of the

wavelength-four mode (open circles) in Fig. 5(a), and the sym-
metric kink (closed circles) in Fig. 5(b). The linear frequency of
the mode is (w3+2¢?)'/2=1.0954.

which the pure wavelength-four mode in Fig. 5(a) and the
symmetric kink in Fig. 5(b) exist and are stable. There
are 52 sites in the lattice with the pure mode, and 49 sites
in the lattice with the kink. As stated in Sec. II, the sta-
bility of the states was tested by imposing random pertur-
bations of the amplitudes. The instabilities in the pure
mode itself are interesting. Along boundary I in Fig. 6,
the nodes develop out-of-phase motion relative to each
other, at the same frequency of the antinodes. The final
state along the lower half of this boundary is the
wavelength-four mode in which the nodes lie halfway be-
tween pairs of lattice sites. Along the upper half of the
boundary, the motion diverges. Along boundary II, the
system decays to rest. Along boundary III, the nodes de-
velop in-phase motion relative to each other. For dimen-
sionless frequencies greater than about 1.0, the motion is
chaotic as evidenced by the scatter of points in Poincaré
maps and by the broadening of peaks in fast-Fourier
transforms. For smaller frequencies along this boundary,
as well as for all frequencies along boundary IV, the
motion diverges. We conclude that most of the instabili-
ties of the pure noncutoff mode unexpectedly do not cor-
respond to those of a single oscillator, whereas all of the
instabilities of the pure upper cutoff mode (Sec. III) corre-
spond to a single oscillator. The pure noncutoff mode
acts as a single oscillator only along the short boundary
IT and the uninteresting boundary IV.

The symmetric kink exists in a subset of the pure-mode
region in Fig. 6, as a result of two mechanisms. Along
boundary V, the kink acts as a nucleation site for the in-
stability that occurs along boundary I for the pure mode,
causing the boundary to occur at lower drive amplitudes.
Along the left half of boundary V the motion diverges,
and along the right half quasiperiodicity develops in the
kink region. Along boundary VI the motion sometimes
diverges, and at other times exhibits a symmetry reversal
similar to that for the upper cutoff kink (Sec. III). In
most of the kink drive plane region, the state occupies
few lattice sites, as represented in Fig. 5(b). However, in
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the vicinity of the linear frequency (lower right corner),
the kink spreads out and diminishes in amplitude. Fur-
thermore, under perturbation the kink in general loses its
symmetry, as would occur for a linear wave. Very near
the corner, the kink occupies the entire lattice, and be-
comes the linear normal mode whose eigenfrequency is
nearest and less than the linear frequency of the
wavelength-four mode.

The physical qualitative reasoning of the connection
between localized noncutoff kink states and extended
linear modes is not as strong as in the upper cutoff case
(Sec. III). The reasoning does not yield continuum non-
cutoff kinks, but at most a periodic chain of either cutoff
kinks and antikinks or breathers and antibreathers. For
lattices where the wavelength of the motion is not large
compared to the lattice spacing, the emergence of a local-
ized kink in the high-amplitude limit of a linear mode can
be physically understood from the condition of uniform
frequency and phase (Sec. III) for at least certain simple
cases. The general validity of this reasoning, however, is
an open question.

V. DOMAIN WALLS

Whereas kinks connect two domains of the same wave
number, domain walls connect two domains of different
wave number. An example is shown in Fig. 7. Domain
walls are stable localized structures that are inherently
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FIG. 7. Elementary domain wall between the wavelength-
two (upper cutoff) and wavelength-four modes: (a) signed am-
plitudes of the oscillators, and (b) phases. The closed and open
circles in (b) represent a phase difference of 180°. The drive pa-
rameters are @ =1.07 and =0.10.
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nonlinear; in contrast to kinks, domain walls are not con-
nected to linear modes and are thus genuine new degrees
of freedom. There is a small temporal phase difference
(0.4° in this case) between the antinodes in the two
domains on either side of the domain wall. This occurs
because the phase relative to the drive is identical to that
of the corresponding pure mode, and the phases of the
two pure modes are slightly different. We were motivat-
ed to check this to determine whether the two domains
were phase locked. If this were the case, then the domain
wall would not be a truly localized structure; in the limit
of a large number of lattice sites from the domain wall
one would still be able to distinguish whether or not this
structure were there. As in the case of noncutoff kinks in
the wavelength-four mode (Sec. IV), the phases of the
quasinodal oscillators approach a constant as the distance
from the domain wall is increased, and the phases are not
as localized as the amplitudes.

As with kinks, domain walls can exist at any of a
discrete set of locations one lattice spacing apart. Fur-
thermore, the domain wall structure is not unique for
fixed values of drive parameters, but depends upon the in-
itial conditions. The “‘elementary” state in Fig. 7 or Fig.
8(a) appears to be unique: All other domain walls we
have observed occupy a greater number of lattice sites,
and can be interpreted as a bound state of the elementary
domain wall and a kink. An example of such a “com-
plex” state is shown in Fig. 8(b). This can be viewed as a
bound state of an elementary domain wall and a kink in
the wavelength-four mode [specifically, the symmetric
kink in Fig. 5(b)], or alternatively as a kink in the
wavelength-two (upper cutoff) mode and an elementary
domain wall. We have observed many such complex
domain walls corresponding to various types of sym-
metric and antisymmetric kinks in the wavelength-four
and wavelength-two modes. Domain walls of greater
complexity have also been observed.

We have also observed domain walls between modes
other than the wavelength-two and wavelength-four, in-
cluding longer-wavelength modes that are quasicontinu-
ous. The current continuum theory [13,14] of domain
walls predicts that these states do not exist in the continu-
um limit of the lattice described by the equation of
motion (1). The resolution of this contradiction may be
that the theory assumes that the response in each domain
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FIG. 8. Domain walls between the wavelength-two (upper
cutoff) and wavelength-four modes: diagrammatic representa-
tions of a highly localized (a) elementary domain wall, (b) com-
plex domain wall, and (c) different complex domain wall.
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is only weakly nonlinear, whereas the numerical data
show a strongly nonlinear response [14].

That the juxtaposition of a kink and elementary
domain wall forms a bound state is dramatically exhibit-
ed by the state in Fig. 8(c), which is composed of the an-
tisymmetric kink in Fig. 5(b) and the elementary domain
wall. For the drive parameters =1.025 and 7=0.20
this state is stable. However, for the same drive parame-
ters the isolated kink state is unstable. The proximity of
the elementary domain wall acts to stabilize the structure
in a manner that is not yet understood, to our knowledge.

Figure 9 shows the regions in the drive parameter
plane in which there exist the pure wavelength-two and
wavelength-four modes (refer to Fig. 3 and Fig. 6, respec-
tively), and the steady-state elementary domain wall [Fig.
8(a)]. There are 50 sites in the lattice with the domain
wall, and reflecting boundary conditions are used. The
stability was checked as in the previous cases. The region
of the elementary domain wall is nearly identical to the
overlap region of the two pure modes. The exception
occurs as the lower right corner is approached: As the
domain wall occupies a greater number of lattice sites, it
eventually undergoes a structural transformation into the
complex state represented in Fig. 8(b). We refer to this
process, in which the structure of a localized state spon-
taneously transforms into a more complicated localized
structure, as “complexification.” The instability is highly
hysteretic and, not surprisingly, the time-averaged lattice
energy (Sec. VI) is found to be discontinuous across the
instability. The complexification appears to be a conse-
quence of the lack of a linear mode corresponding to the
domain wall: The structure can only occupy a larger
number of lattice sites by introducing a kink bound to the
elementary domain wall.

A necessary condition for the existence of a domain
wall is that the drive parameter plane regions of the two
pure modes overlap. The data in Fig. 9 suggest that this
condition may also be sufficient. Because the linear
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FIG. 9. Drive parameter plane boundaries of the upper
cutoff mode (open squares), wavelength-four mode (open trian-
gles), and elementary domain wall (closed circles) between these
two modes.
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modal frequency spacing decreases for smaller values of
the coupling parameter c?, the amount of overlap is
greater, which accounts for our choice of a small value
(c2=0.1). Indeed, for c?=1 we are unable to obtain a
steady-state domain wall between the wavelength-two
and -four modes. This is consistent with the fact that the
drive parameter regions for the pure modes in Fig. 9 can
easily be shown to have no overlap when c2=1, if we
make the plausible assumption that a change in the value
of the coupling parameter only shifts the regions by a fre-
quency equal to the change in the linear modal frequency.
Domain walls should exist for c2=1 if the difference of
the wave numbers of the two extended modes is
sufficiently small.

VI. SYMMETRY REVERSALS, QUASIPERIODICITY,
AND CHAOS

To have a single quantity that characterizes the kinks,
we consider their energy. The natural preliminary
definition is that the kink energy equals the energy of the
lattice with one kink minus the energy of the lattice
without the kink, in which both states have the same
drive parameters. The lattice must of course consist of a
sufficiently large number N of oscillators compared to the
number occupied by the kink such that the kink energy is
independent of N. There are several problems with the
definition, however. First, the instantaneous mechanical
energy (kinetic plus potential) of a driven damped non-
linear oscillator in the steady state is not constant in time.
(This is a genuine effect which is not related to the nu-
merical finite-difference artifact in which the energy oscil-
lates an amount that scales with the time step.) The os-
cillation is easily removed by averaging over one cycle of
the motion. The time-averaged total energy of a lattice
with N sites is

N

E=<2 8,,(t)> , @)
n=1 t

where the bracket subscript denotes the quantity over

which the average is performed, and where the instan-

taneous energy of the nth lattice site is

2 2
-1 n D0 a
SO=5 7@ | T2 05
c? 2 2
+ 7 (00116, +(6,—6, )] (5)

The coupling energy has been chosen to be half of that
between sites n and » + 1, and half of that between sites n
and n —1. The second problem is that the number of os-
cillators in a lattice with one kink cannot equal the num-
ber in a lattice without the kink, when periodic boundary
conditions are employed. We overcome this by averaging
the energy of the pure mode over the lattice sites in one
wavelength, in addition to time averaging. This yields
the average energy per lattice site

e=(g,(0)),, . (6)
The kink energy is then

1101

Ekinsz_NE y (7)

where E is the time-averaged energy (1) of the lattice with
the kink, N is the number of sites in this lattice, and ¢ is
the average energy (6) per lattice site of the pure mode.

The kink energy offers a means of quantifying the sym-
metry reversals (Secs. III and IV). Figure 10 shows a hys-
teresis loop of the upper cutoff kink energy vs frequency
for a fixed drive amplitude, as the frequency is slowly and
monotonically changed. The upper data correspond to
the symmetric kink, and the lower data to the antisym-
metric kink. The curves are the symmetric and antisym-
metric kink energies according to the nonlinear
Schrodinger (NLS) theory. The antisymmetric kink ener-
gy curve agrees well with the numerical data, whereas the
symmetric kink energy curve does not. The discrepancy
is a result of the inaccuracy of the theory in the sym-
metric kink region (Sec. III). The numerical data reveal
that the down-jump occurs where the energy is stationary
with respect to frequency. This is known to occur in
simpler systems, for example, a driven damped nonlinear
oscillator or extended standing wave mode in the hys-
teretic regime.

In a Hamiltonian lattice, the stability of a localized
state is dictated by its energy as a function of position. If
the lattice is nonintegrable, this energy is invariably an
extremum for states of definite symmetry (i.e., symmetric
or antisymmetric), and gives rise to an effective Peierls-
Nabarro (PN) potential [20-23]. Only the state of
minimum energy is stable. Our observations show that
drive and dissipation can fundamentally alter this. In a
range of drive parameters, both states of definite symme-
try are stable under small perturbations. Moreover, in
another range of drive parameters, only the state of
greater energy is stable. The generalization of the PN po-
tential to include drive and dissipation is an open ques-
tion.
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FIG. 10. Hysteresis loop of the upper cutoff kink energy as a
function of frequency, for a fixed drive amplitude of n=0.125.
The points are numerical; the curves are analytical (NLS
theory). The solid curve corresponds to the antisymmetric kink,
and the dotted curve to the symmetric kink. The jumps are in-
dicated by dashed lines.
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As stated in Secs. IIT and IV, upper cutoff and noncut-
off kinks develop quasiperiodic (QP) motion for certain
ranges of the drive parameter values. The QP motion
occurs in the kink region and, in the case of the antisym-
metric kink, causes the site that was the node to oscillate.
We thus refer to this oscillator as the “quasinode.” QP
motion is typically associated with mode competition. It
is interesting that here the additional frequency corre-
sponds to a variation of the response that oscillates from
one side of the quasinode to the other. Figures 11(a) and
11(b) show the motion of oscillators nearby and far from
the quasinode during the QP motion of an upper cutoff
kink. The QP period for the drive parameters in this case
is between 11 and 12 periods of the primary motion. The
QP motion is clearly associated with the localized struc-
ture: The relative amount of this motion decreases with
distance from the kink, and it does not occur for the pure
mode.

Phase plays a fundamental role in the onset of QP
motion and in the motion itself. The instability involves
a phase decrease of the oscillators on one side of the
quasinode and a phase increase on the other side. The
decrease causes the oscillators to absorb energy and thus
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FIG. 11. Quasiperiodic motion of an upper cutoff kink in
which the quasinode is located at site 25: Time dependence of
the (a) amplitudes of site 23 (open circles) and 15 (closed circles),
(b) corresponding phases, and (c) energy of the left half of the
lattice (solid curve) and half the energy of the entire lattice (dot-
ted curve). The amplitudes and phases were measured during
each cycle of the drive, and the energies were averaged over
each cycle of the drive. The drive parameters are ®=1.0 and
7=0.075.
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increase in amplitude, while the increase causes the oscil-
lators to lose energy and thus decrease in amplitude. The
process continues until some limitation causes it to re-
verse. Figure 11(c) shows the time dependence of the en-
ergy of the lattice on one side of the quasinode (including
half the energy of the quasinodal oscillator), compared to
half of the total energy. The energies are averaged over
one drive cycle because the instantaneous energy oscil-
lates a relatively large amount. Although the total ener-
gy is not constant, the oscillations of the energy of the
half-lattice are proportionally much larger. To confirm
that energy is actually passing from one side to the other,
rather than varying solely as a direct result of the exter-
nal drive, we have computed the average power flow
across the quasinode and the average power flow from
the external drive to half of the lattice. For the drive pa-
rameters in Fig. 11, we have found that the flow across
the quasinode and the external drive contribute roughly
equally to the oscillation of the energy of the half-lattice.

The QP motion of the symmetric kink in the
wavelength-four mode is similar to that of the upper
cutoff kink. We expect that this motion is observable in
other kinks and has similar properties. We have also ob-
served QP motion in a domain wall.

As the upper cutoff kink is driven deeper into the QP
regime in the drive parameter plane in Fig. 3, the motion
eventually becomes chaotic as evidenced by the scatter of
points in Poincaré maps and the broadening of peaks in
fast-Fourier transforms. The amount of chaotic motion
relative to the regular motion decreases with distance
from the quasinode, as shown in the Poincaré maps in
Fig. 12. A crude measure of the relative amount of chaos
in the Poincaré map is the area of the smallest upright
rectangle that bounds the points. The values of this area
are displayed with the maps in Fig. 12. The area de-
creases roughly exponentially from the quasinode, with
an exponential coefficient of 0.3 per lattice spacing. A
similar state of localized chaos has recently been investi-
gated [24]. However, this state is complicated by the fact
that it occurs between two domain walls, and so the re-
gion of chaos can for fixed drive parameters span an arbi-
trarily long region of the lattice. The chaotic upper
cutoff kink reported here may offer a simpler state in
which localized chaos can be probed. Indeed, we believe
that the chaotic upper cutoff kink is the limit of the state
in Ref. [24] as the chaotic region of the lattice is reduced
to its minimum size.

VII. FEW-DEGREE-OF-FREEDOM MODELS
OF THE INSTABILITIES

As stated in Sec. III, boundary I in the drive parameter
plane in Fig. 3 corresponds to an instability in which the
upper cutoff kink undergoes a transformation from an an-
tisymmetric to symmetric state as either the drive fre-
quency or drive amplitude is slowly increased. In partic-
ular, the node of the antisymmetric kink becomes unsta-
ble. It is natural to wonder whether this instability can
be simply understood as a single oscillator parametrically
driven at the threshold of excitation. We can then pre-
dict where the instability should occur in the drive pa-
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FIG. 12. Chaotic motion of an upper cutoff kink in which the
quasinode is at site 50 of a 99-site lattice: Poincaré maps of lat-
tice sites 49, 43, 37, and 31. The areas of the rectangles that
bound the points are displayed. The drive parameters are
©=0.96 and p=0.073.

rameter plane if we assume that the oscillators nearest
the nodal oscillator always have equal-and-opposite dis-
placements (as in the steady antisymmetric kink state).
In this case, the net coupling force on the nodal oscillator
is the same as if the nearest-neighbor oscillators are at
rest. The frequency of the nodal oscillator in the limit of
small amplitudes is thus neither the uncoupled frequency
@ nor the linear upper cutoff frequency w,, but is identi-
cal to the linear frequency of the wavelength-four mode.
According to this single-oscillator model, then, the drive
amplitude threshold for the antisymmetric kink instabili-
ty is determined by replacing w, in the Mathieu threshold
relationship (3) with (03+2c?)!/2. The resultant left half
of the curve is shown dashed in Fig. 3. The actual insta-
bility (boundary I) lies substantially to the right of this
curve. The failure of the single-oscillator model is due to
the assumption of equal-and-opposite displacements of
the nearest-neighbor oscillators. This is evidently not the
case; these oscillators (and others) must respond to per-
turbations of the nodal oscillator such that there is a
stiffening of the frequency, causing the instability to shift
to the right. The instability thus involves a collective
effect associated with the oscillators in the region of this
localized structure. It should also be noted that the
single-oscillator model completely fails to predict the in-

stability along boundary II in Fig. 3, where quasiperiodi-
city develops in the antisymmetric kink region.

The two oscillators nearest the center of a symmetric
kink have equal instantaneous displacements. The non-
cutoff kink in Fig. 4 is an example. If we consider a sys-
tem of two linearly coupled identical softening nonlinear
oscillators, it can be shown that the symmetric mode
parametrically drives the antisymmetric mode, and that
excitation of the latter can occur depending upon the
drive parameters. The resultant Mathieu curve for exci-
tation of the antisymmetric mode is skewed to lower fre-
quencies in this case because the mode is excited in the
presence of the symmetric mode. As in the single-
oscillator model above, it is natural to wonder here if the
instabilities exhibited by symmetric kinks can be modeled
by this two-oscillator system. The symmetric noncutoff
kink in Fig. 4 is particularly suited for an investigation of
this possibility because the oscillators nearest to the sym-
metric pair have small amplitudes in most of the drive
parameter plane Fig. 6. In particular, these amplitudes
are small along the instabilities marked by boundaries V
and VI in this plane. For example, for ®=0.95 and
717=0.24 (near the middle of boundary V), the amplitude
is 3.4% of the amplitude of the symmetric pair. We thus
model this state by assuming that the two outer oscilla-
tors are nodes. We have calculated and numerically in-
vestigated the instabilities of this two-oscillator model.
Although boundary V in Fig. 6 lies remarkably close to
the instability in the model, there is a fundamental prob-
lem. The symmetric state in the model is stable above the
boundary, whereas the symmetric kink is stable below the
boundary. We conclude that the lattice instability is fun-
damentally altered by the small motion of the nearest
neighbors and the ability of these oscillators (and others)
to move independently when the symmetric kink is per-
turbed. That is, the collective nature of the motion can-
not be ignored. As in the model of the antisymmetric
kink above, it should be noted that the two-oscillator
model completely fails to predict the instability along
boundary VI in Fig. 6.

Few-degree-of-freedom models similar to those investi-
gated above can also be developed for other kinks. It is
suspected that the models will also fail in these cases as a
result of the collective motion of the oscillators.

VIII. CONCLUSIONS

With a highly interactive and visual computer simula-
tion program, we have investigated various structural
properties of standing upper cutoff kinks, noncutoff
kinks, and domain walls in a damped parametrically
driven lattice. These modes are nonlinear self-localized
states that can occur at any of a discrete set of locations
of the lattice. The properties include preferential kink
symmetry, a variety of distinct noncutoff kink states cor-
responding to different initial conditions and spatial
mismatches, a variety of distinct domain wall states cor-
responding to different initial conditions, and spontane-
ous hysteretic transitions as the drive parameters are
slowly varied. The robust nature of these localized struc-
tures in different numerical lattices and a physical lattice
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suggest that they may occur in many other systems, and
may have similar properties. A nonlinear Schrédinger
theory approximately describes the steady-state upper
cutoff kinks, although these states can exist at amplitudes
beyond which the perturbation theory is valid. Our
quasicontinuum observations of domain walls contradict
the current theory of these states.

By mapping boundaries of the region in the drive pa-
rameter plane in which the steady-state localized struc-
tures exist, we have observed instabilities which lead to
symmetry reversals and complexifications, as well as the
onset of localized quasiperiodicity and chaos. Further-
more, we have observed that the kinks are continuously
connected to linear modes of the system. The drive plane
region corresponding to the quasilinear motion of the
states is very small compared to the region of nonlinear
motion. Domain walls are inherently nonlinear states,
and thus lead to the fact that the number of modes of the
system greatly exceeds the number of degrees of freedom.

The observations in this article point to the need for
further analytical studies of the damped driven kinks and

domain walls, including an understanding of preferential
symmetry and the various instabilities. The effective
Peierls-Nabarro potential of the underlying Hamiltonian
system is fundamentally inadequate to explain the prefer-
ential symmetry here. Plausible few-degree-of-freedom
models of the instabilities fail, indicating collective
behavior that may be particular to mesoscopic systems.
We have mapped the drive parameter planes for only
several of the localized states, and for only single values
of the coupling and damping parameters. It is likely that
further investigations of the localized states reported here
will reveal additional phenomena.
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